Science and Engineering in Molecular Scale
Energy Conversions for Macroscale
Mechanical Engineering
Physical Chemistry

About Us

Our group studies the developments and mechanism elucidations of novel energy conversion systems. To achieve this objective, proper designs and understandings of materials at molecular scale are vital because they govern functions in macroscale. In the research, we use highly multidisciplinary approaches to understand and optimize the kinetics, dynamics, and equilibrium and structural properties of functional materials. The subjects we are presently pursuing relate to photon upconversion and thermoelectric conversion technologies, in which microscopic phenomena such as intermolecular energy transfer and diffusion of solute molecules in host material play essential roles. We have found that these subjects encompass vast unexplored areas because of our unique combination of basic science in molecular scale and engineering for macroscale. Our aim is to contribute to the enrichment of human society with explorations of new engineering frontiers spanning from microscopic to macroscopic domains.

Related Academic Areas

Physical Chemistry, Mechanical Engineering, Transport Phenomena, Thermal and Fluid Mechanics, Photochemistry, Electrochemistry, Materials Science.

Methods Typically Used

- Spectroscopic and electrochemical measurements to elucidate kinetics of energy and mass transfer
- Transient photoluminescence polarization decay measurements to investigate molecular dynamics
- Quantum-chemical simulations to predict properties of molecules.
- Mechanical design using 3D CAD software to create experimental systems, etc.